
Richard Tolimieri 
52 Ashford St. 
Allston, MA 02134 
July 5, 1996 

Dr. Jon Sjogren 
Program Manager 
Communications and Statistical Research 
AFOSR 
110 Duncan Ave. Suite B115 
AFOSR/NM Boiling AFB 
DC 20332-0001 

Dear Jon, 

As a result of several conversations including one with Richard Orr 
of Atlantic Aerospace I have become concerned with the efforts of 
Ana Tsao, Lou Auslander and others propagandizing for the Auslander- 
Johnson FFT algorithm to exagerate their efforts at the expense of 
mine and those of my students and collaborators.  I am simply 
interested in protecting the priority of these efforts and in no 
way commenting on the Ausländer-Johnson efforts as they involve< 
the integrity and influence peddling of DARPA contracts over which 
I have no control. 

Inclosed are two papers: One published by my group in 1991 and the 
second recently submitted by Auslander et al in 1996 which proclaims 
the Auslander-Johnson FFT supported by DARPA.  Both describe the 
exact same divide-and-conguer algorithm for finite abelian groups. 
The relevant pages highlighted in yellow are pages 25-26 in my work 
and pages 7 and 8 in Auslander's work.  Note the Auslander work is 
equivalent to his previous efforts involving induced representations 
as stated on page 3.  Significant extensions of this approach have 
been completely described in my second Springer book and in a second 
paper also enclosed relating the abelian group FFT to affine group 
actions. 

These works have been submitted along with implementations to both 
AFOSR and DARPA from 1989, and have been mailed and hand delivered 
to both Auslander and Tsao.  In addition, tensor product construction 
for the FFT matrix multiplication and the DCT along with 
implementations and automatic code generation have been carried out 
in 1989 by two of my students John Granata and Martin Rofheart 
who "currently run their own businesses in DC aera. 

Note also my paper is a tutorial survey which only claims to 
mathematically organize the works of others which makes it even 
more ironic that the new Auslander-Johnson FFT algorithm can be 
thought of as new five years after publication of the survey. 

DTIC QUALITY INSPECTED 3 
Sincerely, 

Richard Touren 20000428 048 
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Review of "Radar Waveform Design and Clutter Suppression" by L. Auslander 

Dr. Auslander proposes to design radar waveforms to suppress clutter in SAR images. However, he 
does not explain why he wants to do this! It is not clear whether he really wants to suppress clutter or 
sidelobes. If sidelobe suppression is the goal, then the SVA algorithm in Reference [1] is the best 
method (as far as I know), but it is not mentioned in Dr. Auslander's proposal. 

The first two sentences of the section titled "Scientific Proposal" on Page 1 state: "Classical clutter 
suppression at the radar waveform level - say for Doppler - has been achieved by studying the 
spectrum of the clutter and designing waveforms whose Fourier transforms have little energy in the 
support of :he spectrum of the clutter. Classical clutter suppression at the level of SAR images has 
been based on statistical studies of the clutter and the design of pre-whitening filters." 

"C!u::er" is clearly undesirable in MTI radar applications. However, in SAR applications the clutter is 
the signal! Saying that you want to suppress the clutter in SAR images is equivalent to saying that 
you want to suppress the signal of interest, unless you carefully explain what you mean by clutter 
suppression. Unfortunately, I could not find this explanation in the proposal." 

Clutter suppression is usually considered to be a disadvantage, not an advantage, in SAR super- 
resolution algorithms. These algorithms achieve resolutions better than (I/Bandwidth) at the expense 
of emphasizing isolated point-like discretes over the more complicated clutter. The details of diffuse 
clutter features, such as vehicle tracks, are very important in SAR reconnaissance applications. 
Algorithms that suppress these clutter features are usually considered to be bad, not good! 

There may be some benefits to suppressing diffuse clutter in imagery that will be analyzed by an 
automatic target recognition (ATR) algorithm, but this application is not mentioned in Dr. Auslander's 
proposal. (If Dr. Ausländer is indeed trying to suppress diffuse clutter for an ATR algorithm, then he 
would need to be specific about which ATR algorithm he plans to use.) 

Dr. Auslander's mathematics may lead to exotic waveforms that practical hardware cannot generate or 
propagate. Very high-resolution SAR images requiring very wideband waveforms are usually 
obtained with linear FM waveforms because it is difficult to design receiver/exciters and high-gain 
directive antennas with other types of very wideband waveforms. This practical issue is not 
addressed in the proposal. 

The example provided in the proposal is based on ECG data for heart beats. Radar examples would 
have been much more appropriate. 

In summary, my impression of the proposal is very negative. 

Reference 
[1]   H.C. Stankwitz, R.J. Daillaire, J.R. Fienup, "Nonlinear Apodization for Sidelobe Control in 
SAR Imagery," IEEE Transactions Aerospace and Electronic Systems, January 1995. 
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Abstract1— This paper presents a divide and conquer algorithm to compute 

the Fourier transform of a finite Äbelian group using the Fourier transform of an 
arbitrary subgroup and the Fourier transform of the corresponding quotient group. 
The construction uses an arbitrary choice of coset representatives for the quotient 
group. Different choices of cos3t representatives lead to different data flows in the 
algorithm and different twiddle factors. 

The derivation of the algorithm generalizes the derivation of the FFT presented 
by Cooley and Tukey. Moreover, it can be used to obtain explicit algorithms for 
multidimensional Fourier transforms. The algorithm presented in this paper gener- 
alizes all of the known Cooley-Tukey type algorithms for multidimensional Fourier 
transforms and provides new algorithms with alternative data flow patterns. Some 
preliminary experiments suggest that in hierarchical memory computers these al- 
gorithms are more efficient than the standard "row-column" approach. 
SP EDICS SP 4.1.3 — Multidimensional Signal Processing 
Theory, Algorithms, and Systems - Transforms 
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'Permission to publish this abstract separately is granted. 



1    Introduction 
In 1965, Cooley and Tukey [11] presented a divide and conquer algorithm, 
called the Fast Fourier Transform (FFT), for computing the Fourier trans- 
form of a sequence of n points. The FFT has a long and interesting his- 

tory [10]. 
Cooley and Tukey considered the problem of computing 

X(j) = ZWW** * = 0.1....JV - 1," W = e*""'" (1) 

given a complex function A(k). 
Their algorithm is obtained by viewing the functions X and A as functions 

of two variables and rearranging the sum in Equation 1 as a nested sum. Since 
the material in this paper is closely modeled on the ideas in the paper by 
Cooley and Tukey, we reproduce their derivation. 

To derive the algorithm, suppose N is composite, i.e., N = T1T2. Then let 
the indices in (1) be expressed 

; = ;,!■! +J0.J0 = 0,1 n - 1, j\ = 0,1, ...,r2 - 1, (2) 

JL=Jt1r2 + I-o,to = 0,l,...,r2-l, *i =0,1 n - 1. 

Then, one can write 

A'(j,.io) = ££>(*!. W'1'"^0- (3) 

Since 

the inner sum, over *i, depends only on ;0 and k0 and can be denned as a 
new arrav, 

^(J...M = £>(*!. *o)W"'oi'r'- (5) 
*. 

The new result can then be written 

XUiJ») = £i4i(jo.fco)W0',ri+iD,to- (6) 
to 

Alternative algorithms have been presented when rx and r2 are relatively 
prime [13]. The approach of Cooley and Tukey has been used to obtain mul- 
tidimensional Fourier Transform Algorithms. The "vector radix" algorithm 



was presented in [15, 23], and a more general multidimensional algorithm 
was independently presented in [4] and [22]. 

Recently the authors have generalized the Cooley-Tukey algorithm to 
apply to an arbitrary finite Abelian group [1]. This algorithm computes the 
Fourier Transform of a finite Abelian group using the Fourier transform of an 
arbitrary subgroup and the Fourier transform of the quotient group obtained 
by moding out by the chosen subgroup. The construction uses an arbitrary 
choice of coset representatives for the quotient group. Different choices of 
coset representatives lead to different data flow in the algorithm and different 
twiddle factors. These results generalize all of the known Cooley-Tukey type 
algorithms, including those mentioned above, and provides new algorithms 
with alternative data flow. 

The results in [1] were obtained using the theory of induced representa- 
tions; similar in spirit to recent work on algorithms for the computation of 
Fourier transforms of non-Abelian groups [S, 9, 12, 24]. In this paper an al- 
ternative combinatorial proof is presented. This proof generalizes the original 
proof used by Cooley and Tukey. The benefit of this approach is that it pro- 
vides an explicit formula that can be used for constructing multidimensional 
Fourier Transform algorithms. A meta-algorithm is provided that, given a 
presentation for an Abelian group, a presentation for a subgroup, a set of 
coset representatives for the quotient group, and a set of coset representatives 
for a related quotient group in the dual group, constructs a matrix factor- 
ization of the Fourier transform of A. This matrix factorization provides an 
algorithm for computing the given multidimensional Fourier transform. 

In Section 2 the Fourier transform of a finite Abelian group is denned. A 
proof of the main result is presented in Section 3. Section 4 shows how to 
apply the results about Abelian groups to multidimensional Fourier trans- 
forms, and Section 5 presents some concrete examples. In particular, it is 
shown how to obtain the existing algorithms as special cases of the gen- 
eral algorithm. In addition a class of examples are presented that could not 
have been computed with existing algorithms. Finally, Section 6 discusses 
the consequences of the results in this paper to the implementation of high 
performance multi-dimensional Fourier transform algorithms. 



2    The Fourier Transform of a Finite Abelian 
Group 

Let A be a finite Abelian group whose order is denoted by \A\ (the group 
operation will be denoted by +). The set of complex valued functions on A 
with inner product 

\A\a€A 

form an inner product space denoted by L (A). 
A non-zero function x € L2(A) such that 

X(aj + c2) = x(ai)x(ö2) for "l,** 6 A, 

is called a character.  If ajE_A is of order n, then x(<0" = 1, and therefore 

\x(a)\ = 1 and X(-a) = x(<0- 
If xi and X2 are characters then we can define (xi + X2J(a) = Xi(a)X2{a)- 

Under this operation the set of characters form a group, called the dual or 
character group, which we will denote by A. It is well known that A is 
isomorphic to A (see Section 4 and [14]). 

Suppose that x ^ 1, then there exists ax € A such that x{a\) "t L Since, 

E X(fl) = E X(a + rt') = X^ S X(a), 

(1 -X(ai)) Eag.4 x(<0 = 0, and since X(a,) # 1, £o€/* *(a) = 0. The following 
property easily follows from this calculation. 

Lemma 2.1  Let \\.,Xi € A. 

I x _ /  1    >f Xl = X2 
(Xl'X2)-\0   if xi 7^X2 

This lemma implies that A is an orthonormal basis for L2(A). Hence, an 
arbitrary function, / € I2(A) can be written uniquely as 

/(*) = E /(X)x(i), where /(X) = (/,x)- (7) 
xe-4 

This is the Fourier series expansion of the function /.   The coefficients in 
this expansion are called the Fourier coefficients and are obtained from the 
Fourier transform of /. 



Definition 2.1 (Fourier Transform) 
The Fourier transform of A, F{A) : L2{A) - L2{A) is defined by 

F(A)(f)(X) = fix) = |^i E MM = (/. x). 

3    A Divide and Conquer Algorithm 

Let (, ) : A x A -» C be the bilinear pairing of A with its dual A defined by 

(a,ö)=ä(a). 

Let B <A be a subgroup of A. Corresponding to B we can form a subgroup, 
£\ of Ä equal to {ä 6 i| (6,ä) = 1/for b € B}, the characters that are 
perpendicular, with respect to (,), to the subgroup B. 

Since a € Bx is equal to 1 on B, we can identify it with a character on 
C = A/B, by setting a{a + B) = a{a). Likewise given a character, c, of A/B, 
we can obtain a character in B1, by composing the projection A -» A/B 

with c. Therefore f?x is isomorphic to C. 
A character, ä € A, restricted to the elements of B is a character of B 

denoted by h\B. The restriction map, a .-► a\B is a homomorphism from 
A -> B with kernel B1. Since IB1! = \A/B\ and \A\ = |i|, M/B1! = |B| 

and the restriction map is onto; therefore 

Ä/B1 = B. 

As a result of this isomorphism there are IB1! = \C\ characters in A that 
restrict to each character in B.   Moreover, these are the characters in the 

cosets of Ä/B1. 
Let C = A/B and B = A/B1. Let £ : C - A and 77 : B -» A be a choices 

of coset representatives. The following theorem shows how to compute F(A) 
using |C| copies of F{B), \B\ copies of F{C) and |A| complex multiplications. 
The complex multiplications depend on the choices of coset representatives 

£ and fj. 
To simplify the notation used in the following theorem and proof we will 

remove the normalization constant \J\A\ and conjugation in the definition of 

the Fourier transform and compute 

F(A){h) = Y,f(a){a,a). 
a€.4 



There is no harm in doing this since the constants and conjugation can easily 
be reinserted. 

Theorem 3.1 Let B < A, C = A/B, C = Bx, B = A/C, ( : C-+A be a 
choice of coset representatives for A/B, and rj: B -» A be a choice of coset 
representatives for A/C. Then 

f(a) = £<c,c) ((((c),rj(b)) £/«e)(*)M) J • 

where fac)(b) = f(b + ((c)) anda£A = rj(b) + c, with b€B andcCC. 

Proof. Using the coset decompositions of A/B and A/C the indexing sets 
can be written as A = B x ((C) and A = C x 77(B), and 

/(Ä)  =   E/WM W 

=   EE/««#)(* +ttO.*+ $(*))■ (9) 
c6C6€fl 

Using the bilinearity of <,> this is equal to 

£ E /«o(*) M «W.«) (M(*)> (e(c),«(*)>. (io) 
c6C6€B 

Since c 6 ü?1, < b,c >= 1 and Equation 10 is equal to 

EL/£WW(((c),cKM(i)H((c),^))- (ii) 
ceCb£B 

Furthermore, since (((c), c) and (((c),f)(h)) do not depend on the inner sum- 
mation index 6, this is equal to the nested sum 

Y,(z(c)^) Uic),m) E/«e)W(M(*))) • (i2) 

" Finally, since (((c). c) and (b,fj(b)) are independent of the choice of coset 
representatives ((c) and 7/(6) this completes the proof. I 

This theorem is the basis for a divide and conquer algorithm for comput- 
ing F(A)X which we now describe. 



1. Compute /{(c) = F(B)fi{c) for ctC 

2. Compute g.{i) for b € £, where g-{i)(c) = {Z(c),rj(b))fi{c)(b) for c € C. 

3. Compute g.{l) = F(C)^(i) for 6 € B. 

Observe that /f(c) € L2(B), ^(i) 6 # (C), 9^ G L2(C), and by Theorem 3.1 

g.{i){c) = f(rj(b) + c). Since any a can be written as fj(b) + c for some b € B 

and ceC, all of the values of the function / = F(A)f have been computed. 
To implement this algorithm the elements of A and A must be ordered. 

Ordering the elements of A and A fixes the representations of the functions / 
and /, introducing data permutations or index computations when accessing 
the values of /€(c) and g.^, and storing the values of g^iy 

If the elements of A are ordered then / can be viewed as a vector whose 
indices are the elements of A. Step (1) of the above algorithm first creates 
\C\ functions of B denoted by /€(e). If the elements of B are ordered then 
the functions fac) can be represented by subvectors obtained from /. The 
subvectors fi{c) can be ordered using the order of the coset representatives 
((C). Therefore the first part of Step (1) corresponds to a permutation of 
the vector /. This permutation is determined by the order of the elements 
of A, the subgroup B, and the coset representatives ((C). It corresponds to 
permuting the indexing set A to ((C) x B; 

After the vectors /c(e) are gathered, fi{c) = F(B)fM is computed for 
each ceC. Step (2) then creates \B\ = \B\ functions of C. For each be B 
the function J-(J, defines a function of C. If the functions fi{c) are stored as 
vectors the computation of g^ requires a stride permutation followed by a 
diagonal multiplication (called the "twjddle factor"). The stride permutation 
gathers the elements of each vector fi{c) indexed by b.  The twiddle factor 

multiplies fi{c)('b) by (£(c),^(6)). 
Finally, Step (3) performs \B\ computations of the Fourier transform on 

C, g^,-b) = F(C)gmiy As mentioned above, the resulting functions combine 

to give all of the values of /; however, the values are not necessarily in the 
order specified for A. Instead, the functions are indexed by 17(B) x C, and a 
permutation similar to the one in Step (1) is required so that the resulting 
function is ordered corresponding to the order of A. 



APR-14-2000 15=27       CUNY/GRADUATE CENTER 212 642260?  P.07/59 
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Decay in Time and Frequency 
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Abstract 

For functions with finite time and frequency energy moments, we find 
upper bounds for the error of finite Fourier transform approximation to the 
Fourier transform. The error can be measured as the maximum error over 
all of the points of the FFT, or using a discrete L3 distance, or using a 
continuous L3 distance. 

Using the machinery developed, we also find an upper bound for the 
error of approximating the L3 norm of a function by a Riemann sum. From 
this result, an upper bound is also derived for the error of approximating 
the L3 inner product, as well as the error of approximating the integral of 
an L1 function, by a Riemann sum. 

As an application of the L3 norm approximation theorem, we prove 
an analog of the Landau-Pollak-Slepian approximate dimension theorems 
for a certain set of functions that is approximately time-and-bandb'mited 
for large duration N and bandwidth M. This set can be approximately 
parameterized with NM parameters, with the error approaching zero as 
NM approaches infinity. 
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0    Introduction 

One of the most important operations in the signal processing industry is taking 
the Fourier transform of a function. With digital signal processing, the finite 
Fourier transform (FFT) is used instead. A question of great practical importance 
immediately arises: How good an approximation is the FFT? 

The Fourier transform at a particular frequency is nothing more than an in- 
tegral. And, the FFT at a particular frequency is a special case of numerical 
integration using Riemann sum approximation. It would not be surprising if the 
theory of Riemann sum approximation allows us to derive an error bound for the 
FFT. In fact, we will do just the opposite. We will use an error bound for the 
FFT to derive an error bound for more general Riemann sum approximation. 

To obtain any results, it is clear that the class of functions must be restricted 
somehow. For example, if there are no restrictions on the oscillations, knowing 
the function at a finite set of points tells us nothing about the function anywhere 
else. We will consider functions that decay sufficiently fast in time and frequency 
(in the sense that will be described below). For this class of functions, we will 
derive an error bound for FFT approximation to the Fourier transform and an 
error bound for more general Riemann approximation. 

0.1    Background 

Previous Results 

All previous error bounds that I am aware of come out of the observation that 
we can rearrange the terms of the Poisson summation formula and the formula 
becomes the desired error bound. It is not clear who first discovered this. See 
Butzer-Stens [BS] and Briggs-Henson [BH, Chapter 6]. 

Assume that / satisfies whatever conditions are necessary so that the Pois- 
son summation formula is valid. Consider the case of approximating the Fourier 
transform, denoted /fr), by the FFT at 7 = 0. That is, we will approximate 

. ,   M/2-1 
/(0)-//(0*    by    -L    £    f(k/M). 

J M k=-NM/2 

N and M will be assumed throughout this introduction to be even positive num- 
bers. N is the timelength of the approximation and M is the sampling rate. 

Note 1: By focusing on what seems to be just the special case of FFT approxi- 
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mation where 7 = 0, we are actually considering the general case of Riemann sum 
approximation. 

Note 2: For the case of 7 ^ 0, we can apply the following method to fe~7*ltl. 
In fact, by the same method, we can obtain an upper bound for the maximum 
error over all the points upon which the FFT is defined. (See Section 5.1.) 

One form of the Poisson summation formula is 

£ /(MO = i £ fik/M). 
*€Z M *€Z 

A rearrangement of the terms yields the following error bound: 

.    \NM-x 

/(o)-^   E   fWM) 
kzs-^NM 

±( E  +   E  )fWM) + E f(kM) 

The error bound can be interpreted as follows. Discretization results in two 
types of error. Truncation error comes from the fact that the FFT only utilizes 
function values over a finite duration. Aliasing error comes from the fact that 
the FFT is limited to a finite sampling rate. The first term of the error bound is 
primarily caused by the truncation error. The second term is primarily caused by 
the aliasing error. 

The form of the error bound provides practical information about how the 
error can be reduced. Let's say the first term of the error bound is much greater 
than the second. Then increasing N will be much more effective in reducing the 
error than increasing M. 

At this point, we can impose various conditions on / to obtain many different 
theorems. One possibility is as follows. Let j be an integer greater than 1. Let's 
assume that /k'-D js absolutely continuous (which implies that /(,) exists almost 
everywhere) and that /<*> € L^R) for all k < j. 

Then, using integration by parts ; times, 

fit) = ff(t)e-^dt = (JUy / /W(0e-**n*. 

We will show in the next paragraph that the boundary terms from all of the 
integrations by parts are zero. 

Consider the following two typical terms involved in one of the the above j 
integrations by parts: 

fen (_L)* [* f^ity-^dt    and       lim (r^-)t+1 I* f^^t^'^dt 
A*-~eoK2xiY   J-AJ      W A,B-»V27r»7/       J-A w 
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Because of our L1 assumption, these limits exist for any fixed 7 and all 0 < k < 
j — 1. Therefore, the boundary term from each of the integrations by parts must 
also approach a limit as A, B approaches infinity. The boundary term is 

Because of the exponential factors, the only way that this limit can exist is if 
limiti^oo fik\t) = 0. Therefore, the boundary term also equals zero. 

From the expression for / in terms of /W, we see that / is 0(j-y|—J). Now, let's 
estimate the second error term in the rearrangement of the Poisson summation 
formula. The decay of / tells us that the second error term is bounded by a 
constant times £(kM)~j, which is 0(M~'). 

We can also make the same assumptions for / that we did for /. Assume that 
fli-V is absolutely continuous and that /(i) € L1(R) for all k < ;. By similar 
reasoning, we see that / is 0(|i|~;). Therefore, the first error term is bounded by 
a constant times J^t^dt, which is 0(N'^~1^). 

La Approach 

The prior results show that if the derivatives of / and / are absolutely continuous 
and in L1(R), then we can obtain error bounds for both FFT approximation and 
Riemann sum approximation. What happens if we replace the hypothesis that 
the derivatives are in L1 with the hypothesis that the derivatives are in L3? That 
is the question that we will address. 

Note that we are weakening the hypothesis (on the first j — 1 derivatives). 
We saw above that if /W is absolutely continuous and /(t), /<*+1) £ L1, then 
limjtHoo /«(*) = 0. This implies that |/«(0la < |/W(0I &>r sufficiently large t 
which implies that /W € L2. Since our hypothesis is weaker, we should expect 
weaker results. 

There is a simpler way to describe the conditions in our hypothesis. The 
assumption that /k-i) is absolutely continuous and that fW g L2(R) for all 
k < j is equivalent to the assumption that the jth frequency moment is finite. 
This moment is defined by 

D? = J 72j\f\2df- 
This result is essentially the content of Lemmas 1.3 and 1.4. 

The dual of this result is also true. The assumption that /k'-1) is absolutely 
continuous and that fW e L2(R) for all Jfc < j is equivalent to the assumption 
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that the jth time moment is finite. This moment is defined by 

This equivalence may make our results more practical than the results obtained 
with the L1 hypothesis. With the Ll hypothesis, the error bound depends on the 
L1 norms of the jih derivatives. This information is usually difficult to calculate. 
Our approach uses energy moments, which may be easier to calculate. 

0.2   Notation and Definitions 

/(7) =, lim (in V) fA f(t)c'^dt 
A-»oo J-A 

The version of the Fourier transform that we use is 

M 

The limit refers to convergence in L2(R). 

11/11 denotes the norm of / in L'(R). The L3([-Jv"/2, N/2]) norm is denoted 

by \\f\\[-mM]- 

The following norm is described in more detail in Section 2.2. Let J%LN be the 
set of points {k/J^}k=-l-JVA/,...,ANAf-l- This notation is supposed to remind the 
reader of the set of points {k/M} modulo N. The L* norm for functions defined 
on jjZff is defined to be 

,   |AW-I 

I!/IIW)=T7    E    \fWM)?. 

Our version of the FFT is an operator from L3(^Zjv) onto LJ
(^ZM) defined 

by 

/(*/*) = T7    E    /WM)*-***"*»,   n = -ijVW,... ,-NM-l. 
Mk=-\NM 2 2 

The FFT of / will be denoted by /. 

Note: The nonstandard scaling in the definitions of the FFT and the discrete 
norm are used to make the FFT is a unitary operator. With these definitions, 

|l/|b(N,W) = |I/||D(AW 

7 
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(See Section 2.2 for proof.) 

The FFT can easily be extended*to all of R so that it is a periodic function 
with period M. The extended FFT, denoted by /", is 

A7) = T7   E   /MW»-"». 

Note: The extended FFT is also a unitary operator. By Parseval's equality 
for periodic functions, 

Wf\-MI7,M17\ = \\f\\D{MtNy 

The periodization operator Pft is defined by 

(Psf){t) = £/(* + kN)>    f 6 La(R) and decays sufficiently fast. 

See Section 2.2 for a more precise definition. 

z means the the complex conjugate of x. 

|xj means the greatest integer less than or equal to x. 

0.3    Executive Summary 

FFT Approximation 

From now on, throughout this paper, all functions are assumed to be in L2(R), 
unless stated otherwise. We also assume that / and / are continuous. (In fact, 
most of our results depend on the existence of time and frequency energy moments, 
which is a stronger condition than the continuity of / and /.) 

Because of our assumptions, both the Fourier transform and the FFT exist. 
We would like to measure the error in approximating the Fourier transform by 
the FFT. 

The error in the FFT approximation can be measured in many ways. One way 
is to measure the maximum difference over all of the points upon which the FFT 
is defined. 

Since / is assumed continuous, we can evaluate / at j,ZM. Therefore, we can 
also measure the error by calculating the discrete L* distance, \\f - f\\D(SlM). 
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We can also measure the error by calculating the continuous L2 distance, ||/! - 
f\\l-M/2,M/H- 

With the L1 hypothesis, a key step in deriving an error bound was to show 
that / and / decay at a sufficiently fast rate. We obtain a similar result easily in 
Lemma 1.5. If Cj and D\ are finite, then 

-i \f2(t)\ < A\t\ 

where A is a constant, unfortunately, this lemma doesn't give us any information 
about what the constant is. 

However, a diiferent approach yields an even stronger result. Define the dis- 
crete tail energy to be 

&»M*j?   £    \f(k/M)\2. 

In Lemma 2.3, we show that if Cj and Dx are finite, then the discrete tail energy 
is 0(N-'), and we also have an upper bound for the constant involved. 

Notice that this implies that f\t) is 0{\t\-*). At this point, we could plug this 
information into the rearrangement of the Poisson summation formula as we did 
with the L1 hypothesis to obtain a bound for the maximum error. This approach 
results in the first FFT approximation theorem (Theorem 5.1). 

By preceding somewhat differently, we can obtain bounds for the discrete and 
continuous V error. The following briefly describes how we derive an upper bound 
for the discrete L2 error. 

Since the discrete energy in the tail is bounded, one would expect that we 
can find an upper bound for the discrete V distance between a function and its 
periodization. In fact, we prove the following periodization comparison lemma 
(Lemma 2.8). If Cj and Dx are finite, where ;' > 2, then 

\\P*f-f\\D{M,N)<KN-j'\ 

where K depends only on Cj and Z), (and inversely on N and M). 

This lemma allows us to replace / and / in the definition of the discrete L2 

distance between the FFT and the Fourier transform with periodizations (using 
the triangle inequality). Of course, replacing / with (PNf)~ introduces an error 
of KXN->I and replacing / with PMf introduces an error of KtM-*'2. 

Now we must calculate ||(ft,/)~ - PMf\\D{NMy For this, wc use the general- 
wed Poisson summation formula (Theorem 4.1). The generalized Poisson summa- 
tion formula says that under the hypotheses of the Poisson summation formula, 
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(P/ff)~ is equal to the sampled Puf. Therefore, in our case, where the hypothe- 
ses are met because of energy moment conditions, the norm of the difference is 
zero. 

We have just derived the desired upper bound for the discrete L2 error (The- 
orem 5.2). If Cj and Dj are finite, where j > 2, then 

11/- /lto(**o < KiN-»3 + KiM-V*. 

K\ depends only on Cj and D\ (and inversely on N and M). K* depends only on 
Dj and C\ (and inversely on N and M). 

We also obtain an upper bound for the continuous L2 error (Theorem 5.3, see 
Section 5.3 for the proof). If Cj and Dj are finite, where ; > 2, then 

11/' - f\\i-WM/2] < KiN-»2 + KM-*. 

K\ depends only on Cj and Z?i (and inversely on N and M). Kj depends only 
on Dj. Notice that the second error term is better than the corresponding term 
in the previous result. 

Riemann Sum Approximation 

Since we are focusing on the L2 norm error, our approach does not automatically 
provide an error bound for more general Riemann sum approximation. However, 
from the third FFT approximation theorem, we derive the L2 norm approximation 
theorem (Theorem 6.1). Then, we bootstrap our way to derive error bounds for 
more general Riemann sum approximation. 

From the third FFT approximation theorem and the triangle inequality, we 
have 

| )\A\[-M/2Mm - \\f\\l-M„M/2)\ < KiN-M + tf2M-', 

As mentioned above, the first term of this inequality, ||/ll||{-jif/2,M'/2]» is equal 
to II/[|D(WV) by Parseval's equality for periodic functions. 

The second term, \\f\\[-Mj7,M/2b can be replaced by ||/|| = ||/|| at the expense 
of increasing üf3. This is a consequence of Chebyshev's inequality. 

Making these two substitutions proves the L2 norm approximation theorem. 
If Cj and Dj are finite, where j > 2, then 

| 11/11 - \\f\\D(M.S)\ < KxN-i* + KzM-i. 
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